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Abstract

A simpli®ed analytical model of the coupled ¯ow, heat, and mass transfer in the core region of a rectangular, low
aspect ratio ¯ow channel has been developed that can predict the magnitude of the ¯ows and the convective

transport resulting from small transverse steady and periodic accelerations typically associated with manned
spacecraft. The e�ects of stabilizing and destabilizing axial gradients are determined for both steady and time
dependent transverse accelerations. It is found that the time average of the heat and mass transport scales as the

square of the Grashof number and is inversely proportional to the 7/2 power of the frequency. Furthermore, it is
shown that the e�ects of multi-frequency disturbances are additive making it possible to integrate over a properly
weighted power spectral density spectrum in order to obtain the net ¯ow and transport. The relative transport from

steady and periodic accelerations was estimated for the types of experiments germane to this model that are
typically carried out in microgravity. It was also found that a stabilizing axial gradient has little e�ect on the ¯ows
and transport at higher frequencies, suggesting the possibility of testing the g-jitter predictions on the ground.
Finally it is shown that the start-up transients can have profoundly di�erent e�ects depending on the phase of the

acceleration at the starting time. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The acceleration environment on a large spacecraft
such as the Shuttle or the International Space Station

may be characterized by a low-level, quasi-steady
acceleration from drag and gravity gradient e�ects,
which ranges from 1 to 10 mg, and a spectrum of larger
amplitude, periodic accelerations with frequencies

ranging from sub hertz to tens of hertz (sometimes
referred to as ``g-jitter''). The latter are associated with
the natural frequencies of the various bending modes

of the structure and are excited by crew motion, on-

board reciprocating machinery, and by impulsive tran-

sients such as thruster ®rings.

There have been numerous attempts to model the

e�ects of these accelerations for a generic class of

experiments, usually some form of Bridgman-type

crystal growth. Examples of these e�orts are given

in Refs. [1±7]. Unfortunately, there are virtually no

de®nitive experimental data with which to compare

these model predictions. While it is possible to

model experiments numerically in great detail using

realistic con®gurations, it is di�cult to obtain a

general theory from such computations or to derive

scaling laws that would allow optimizing the design

of a particular experiment or the extrapolation to a

di�erent set of experiment conditions. Also, tracking

higher frequency accelerations numerically until a
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steady solution is reached can consume a signi®cant

amount of computer time. An analytical model,

even though it must be simpli®ed to remain tract-

able, overcomes these di�culties and can provide

considerable insight and useful scaling laws.

The model presented here considers only the core

¯ow in a low aspect ratio (length >> height) rec-

tangular channel with a uniform density gradient,

which represents a simpli®ed Bridgman con®guration

as illustrated schematically in Fig. 1. This simpli®ca-

tion eliminates the analytical di�culties in describing

the two-dimensional turning ¯ows near the ends

and focuses instead on the one-dimensional ¯ow

near the midpoint of the ¯ow channel for which

closed form analytical solutions can be obtained. Of

primary interest will be the heat (or mass) transport

across the midplane of the ¯ow cell, which must

also appear at the ends. Thus, it should be possible

to predict how the acceleration environment a�ects

the thermal and solutal transport to the growth

interface from the simple one-dimensional ¯ow

model.

The steady ¯ow and heat transfer in a shallow hori-

zontal cavity with di�erentially heated end walls was

treated by Cormack, Leal, and Imberger [8]. They

expanded the Navier±Stokes equations in terms of the

aspect ratio A, de®ned as the ratio of height h to
length L of the cavity, and showed that, in the limit of

small A and small Rayleigh numbers, the ¯ow in the
core region was parallel to the walls with the warmer
¯uid ¯owing from hot to cold in the upper half of the

Nomenclature

a half-height = h=2
A aspect ratio = h=L
C concentration

D solutal di�usivity
f applied vibrational frequency
g acceleration

Gr Grashof number = gy�brT� grC �a4=n2
h height of the ¯ow chamber
L length of the ¯ow chamber

Nu Nusselt number = convective thermal
transport/conductive thermal transport

p pressure
Pr Prandtl number = n=k,
RaT

x thermal Rayleigh number = gxbrTa4=nk
RaS

x solutal Rayleigh number = gxgrCa4=nD
Sc Schmidt number = n=D
Sh Sherwood number = convective solutal

transport/di�usive solutal transport
T temperature

u x-component of velocity
v y-component of velocity the coe�cient of

thermal expansion

x position along L
y position along h
U dimensionless velocity = ua=n

Greek symbols
b coe�cient of thermal expansion
g coe�cient of solutal expansion

Z dimensionless coordinate = y=a
Y dimensionless temperature perturbation =

�T=�arT �
k thermal di�usivity
m absolute viscosity
n kinematic viscosity = m=r
r density
t momentum relaxation time = a2=n
w dimensionless compositional perturbation

= �C=�arC �
o angular frequency = 2pf
O dimensionless frequency = oa2=n

Superscripts
' di�erentiation with respect to Z
~ complex quantity
^ real amplitude
� perturbation solution

Subscripts
x and y components of acceleration

Fig. 1. Schematic of the geometry used in the model. The

thermal gradient is positive along the x-axis so for y � 0, the

Rax is positive and the system is in the unstable (cold over

hot) thermal con®guration. The curved lines represent iso-

therms distorted by the ¯ow.
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cavity above a counter ¯ow of the cooler ¯uid in the
lower half of the cavity. The temperature gradients are

constant but displaced along the streamlines. A sol-
ution was found by matching the core ¯ow to the ®rst
several terms of an asymptotic expansion of the ¯ow

in the end region. This solution was compared to nu-
merical solutions [9] as well as to experimental
measurements [10]. It was found that the assumption

of parallel core ¯ow was valid provided AR0:25 and
that their solution was found to be in excellent agree-
ment with numerical as well as experimental results

provided the Rayleigh number satis®ed Ra2A3R105

which, for small A, carries the theory well into the
regime in which heat transfer is dominated by convec-
tion. For larger values of the Rayleigh number, the

required product of Ra2A3 to provide the same convec-
tive transport, which is characterized by the Nusselt
number, increases rapidly; eventually approaching the

case in which the Nusselt number becomes indepen-
dent of A and 0Ra1=4 as predicted from boundary
layer theory [11].

The Gr in this paper is de®ned in terms of the den-
sity gradient and the half-width of the chamber, which
is di�erent from the more conventional de®nition used

by Cormack et al. Since the Gr here is equivalent to
A=256 times Cormack's de®nition, the range of validity
in the present notation is Gr2Pr2AR105=2561400:

2. Derivation of the governing equations

An alternative approach to that taken by Cormack
et al. is to derive time-dependent equations of motion
in the core region directly using the assumptions of

parallel laminar ¯ow and constant thermal (or solutal)
gradients in the core region. If the vertical component
of velocity vanishes, the continuity equation requires

that the horizontal velocity u be a function of y only
and the advective momentum terms also vanish. In the
Boussinesq approximation, the x and y momentum
equations reduce to

@u�y, t�
@ t

� ÿ 1

r0

@p

@x
� n

@ 2u�y, t�
@y2

� �1ÿ b�Tÿ T0 �
�
gx

�1�
and

0 � ÿ 1

r0

@p

@y
� �1ÿ b�Tÿ T0 �

�
gy: �2�

The pressure terms are eliminated by cross di�erentiat-
ing the above and subtracting to give

@ 2u�y, t�
@ t@y

� n
@ 3u�y, t�
@y3

ÿ b
@T

@y
gx � b

@T

@x
gy: �3�

Assume T�x, y, t� can be written as T0 � xDT=L�
�T�y, t� where T � T0 � DTx=L is the base state and
�T�y, t� is a perturbation on the temperature ®eld. Since

n � 0, u � rT � u�y�DT=L and any change in T will be
a function of y only.

Now a partial integration of Eq. (3) over y is carried
out. This introduces a constant and an arbitrary func-
tion F�x�: However, the continuity equation tells us

that the core ¯ow u is a function of y only; therefore,
we set F�x� � 0: If we take y � 0 as the center line of
cavity, the "no-net ¯ow condition" requires that u and

@u=@ t have terms of odd powers of y only, which
requires the constant be set to zero. Thus, the govern-
ing equations for ¯ow and heat transport for laminar
core ¯ow in a two-dimensional horizontal cavity may

be written as

@u�y, t�
@ t

� n
@ 2u�y, t�
@y2

� gyb
DT
L

yÿ gxb �T�y, t� �4�

@ �T�y, t�
@ t

� u�y, t�DT=L � k
@ 2 �T�y, t�
@y2

: �5�

This derivation can be generalized to include solute
transport by employing the same arguments to the
solute transport equation, which gives

@ �C�y, t�
@ t

� u�y, t�DC=L � D
@ 2 �C�y, t�
@y2

�6�

where C�x, y, t� � xDC=L� �C�y, t�: The e�ect of the
solutal gradient must be added to the momentum
equation to give

@u�y, t�
@ t

� n
@ 2u�y, t�
@y2

� gy�brT� grC�y

ÿ gx

�
b �T�y, t� � g �C�y, t�

�
: �7�

To simplify these equations, introduce a dimensionless
length Z � y=a, a dimensionless temperature Y and a

dimensionless concentration w de®ned as

Y�Z, t� �
�T�Z, t�
arT �8�

and

w�n, t� �
�C�Z, t�
arC : �9�

The momentum equation may be written in terms of a
dimensionless velocity (or Reynolds number) U�Z, t� �
u�Z, t�a=n as

_Ut � U 00 � GryZÿ RaT
xY=Prÿ RaS

xw=Sc �10�
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The subscripts x and y refer to the components of the
g vector. The transport equations then become

_ytPr�UPr � Y 00 �11�
and

_wtSc�USc � w 00: �12�
The boundary conditions are u�21� � 0 (no slip at the
walls),

� 1
ÿ1 u�Z� dZ � 0 (conservation of ¯ow),

�C
0�21� � 0 (no solute transmitted through the walls),

and either �T�21� � 0 (conducting walls), or T 0�21� �
0 (adiabatic walls) where the prime denotes di�eren-

tiation with respect to Z:
Usually, the Nusselt number is de®ned as the ratio

of total heat transport to di�usive (conductive) heat

transport. Since we will mostly be dealing with small
convective transport, it is more convenient to de®ne a
modi®ed Nusselt number as the ratio of convective

transport across a boundary to conducted transport.
Integrating the convective heat ¯ow through a plane
normal to the x-axis and dividing this by the di�usive
transport, we obtain,

Nu�t� �

�1
ÿ1

u�t, Z�rCvT�t, Z� dZ

ÿ
�1
ÿ1

KrT dZ

� ÿPr
2

�1
ÿ1

U�t, Z�Y�t, Z� dn: �13�

Similarly, a modi®ed Sherwood number is de®ned as
the ratio of solute transported by convection to that

by di�usion.

Sh�t� �

�1
ÿ1

u�t, Z�C�t, Z� dZ
ÿ2DrC � ÿSc

2

�1
ÿ1

U�t, Z�w�t, Z� dn:

�14�

3. Cases for which closed form solutions exist

Case 1 (gx and gy constant). This case was considered
in Ref. [12] for adiabatic walls in which the ¯ows were

driven either by thermal gradients or by solutal gradi-
ents. A more general solution for ¯ows driven by any
combination of thermal and/or solutal gradients can

be written as

U�Z� � Gry
b3

�ÿsin�b� sinh�bZ� � sinh�b� sin�bZ�
cos�b� sinh�b� � sin�b� cosh�b�

�
�15�

Y�Z� � ÿGryPr
b5

�
sin�b� sinh�bZ� � sinh�b� sin�bZ�
cos�b� sinh�b� � sin�b� cosh�b� ÿ bZ

�
�16�

w�Z� � ÿGrySc
b5

�
sin�b� sinh�bZ� � sinh�b� sin�bZ�
cos�b� sinh�b� � sin�b� cosh�b� ÿ bZ

�
�17�

where b � �RaT
x � RaS

x�1=4: In this notation, a positive
Rayleigh number denotes the destabilizing con®gur-

ation. There is a singularity in the denominator at b �
2:365 which corresponds to a combined Rayleigh num-
ber (thermal + solutal) of 31.284. In terms of the
more conventional de®nition of the thermal Rayleigh

number when dealing with unstable convection,
Ra � gbDTL3=nk, the singularity in Eqs. (15)±(17) in-
dicates a critical Rayleigh number of Ra � 500:5=A4,

where A is the aspect ratio.

For the stabilizing con®guration, b will be complex.
The denominator in Eqs. (15)±(17) becomes
ÿ8 ���

2
p

Gr3x�sin�b�� cos�b�� � sinh�b�� cosh�b��� where

b� � ���
2
p jRaT

x � RaS
xj, and the singularity is removed.

As b vanishes (pure transverse acceleration), the
above equations reduce to simple polynomials,

U�Z� � ÿGry
6

ÿ
Z3 ÿ Z

�
�O�b2 � �18�

Y�Z� � ÿGryPr
360

ÿ
3Z5 ÿ 10Z3 � 15Z

�
�O�b2 � �19�

Nu � ÿPr
2

�1
ÿ1

U�Z�Y�Z� dZ � 2

2835
Gr2yPr

2 �20�

For thermally conductive walls, the solutions becomes

U�Z� � Gry
2b2

�ÿsin�b� sinh�bZ� � sinh�b� sin�bZ�
sin�b� sinh�b�

�
�21�

Y�Z� �

ÿ GryPr

2b4

�
sin�b� sinh�bZ� � sinh�b� sin�bZ�

sin�b� sinh�b� ÿ 2bZ

��22�

Here the ®rst singularity occurs at b � p, which corre-
sponds to a combined Rayleigh number of p4 � 97:406
as de®ned in this paper, or to the more conventional

Ra � 1559=A4: This is in exact agreement with the
critical Rayleigh number found in the stability analysis
of this con®guration by Gershuni and Lyubimov [6].

For the stabilizing con®guration, b will be complex,
the denominator in Eqs. (15)±(17) becomes
ÿ4Gr2x�sin2�b�� cosh2�b�� � sinh2�b�� cos2�b��� where
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b� � ���
2
p jRaT

x � RaS
xj, and the singularity is again

removed.

As b vanishes, Eq. (21) reduces to Eqs. (18) and (22)
and Nu become

Y�Z� � ÿGryPr
360

ÿ
3Z5 ÿ 10Z3 � 7Z

�
�O�b2 � �23�

Nu � ÿPr
2

�1
ÿ1

U�Z�Y�Z� dZ � 1

4725
Gr2yPr

2 �24�

These equations describing the ¯ow and transport in a

narrow horizontal cavity for Rax � 0 are identical to
those obtained by Cormack, Leal, and Imberger [7].
Bejan and Tien [13] also obtained a solution for the
¯ow in a long horizontal cylindrical pipe with di�eren-

tially heated ends. Their results were similar to Eq.
(18) except the 6 in the denominator was replaced by
an 8, indicating that the ¯ows predicted for two-

dimensional cavities can be reasonably expected to
apply to three-dimensional cylindrical geometries with
a minor correction to account for the additional vis-

cous drag force from the walls.

Case 2 (Periodic transverse acceleration, constant axial
acceleration). For g�t� � Re� ~geiot� � ĝ cos�ot�, assum-

ing u and T are zero at t � 0, the solution to Eqs. (10)
and (11) may be written,

U�Z, t� � ÿ Ĝry
X
n

2 cos�np� sin�npZ�
npDenn

�
h
An cos�ot� � Bn sin�ot� ÿ Aneÿn

2p2t=t
i
�25�

For conducting walls,

Y�Z, t� � ĜryPr
X
n

2 cos�np� sin�npZ�
npDenn

"
Cn cos�ot�

�Dn sin�ot� � Aneÿn
2p2t=t

n2p2�1� Pr� ÿ
�
Cn

� An

n2p2�1� Pr�
�

eÿn
2p2t=Prt

#
�26�

where

An � n2p2
ÿ
n4p4 � O2Pr2 ÿ Rax

�
Bn � O

ÿ
n4p4 � O2Pr2 � PrRax

�
Cn �

ÿ
n4p4 ÿ O2Prÿ Rax

�
Dn � n2p2O�1� Pr�

Denn �Ra2x ÿ 2�n4p4 ÿ O2Pr�Rax �
ÿ
n4p4

� O2
�ÿ
n4p4 � O2Pr2

�
To obtain the Nusselt number, the series product may
be integrated over Z by making use of the orthogonal

properties of sin�npZ�: After the transients die out, the
resulting expression may be broken into a periodic
term whose amplitude is

N̂u � Ĝr2yPr
2
X
n

�AnDn � BnCn �
n2p2Den2n

�27�

and a steady term

hNui � Ĝr2yPr
2
X
n

�AnCn � BnDn �
n2p2Den2

n

which reduces to

hNui � Ĝr2yPr
2
X
n

1

Ra2x ÿ 2�n4p4 ÿ O2Pr�Rax �
ÿ
n4p4 � O2

�ÿ
n4p4 � O2Pr2

�
�29�

Here one can see the e�ect of the stabilizing gradient
�Rax < 0� on the resulting ¯ows and transport. For

Rax � 0, this expression further reduces to

hNui � Ĝr2yPr
2
X
n

1ÿ
n4p4 � O2

�ÿ
n4p4 � O2Pr2

� : �30�

These series converge for all values of O and Pr as can
be demonstrated by the integral test. In the limit

O40, the series for hNui converges rapidly to 1=9450,
which is exactly half the result from the steady state
case. This di�erence is due to the latter taking the time
average over the square of a periodic acceleration,

which yields the mean square value of 1=2:

For large O, the sum over n may be replaced by an

integral giving the result

hNui1 Ĝr2y

O7=2

Pr1=2�Pr3=2 ÿ 1�
23=2�Pr2 ÿ 1� ; O� 1: �31�

Note that for large O and large Pr, Nu0Ĝr2yO
ÿ7=2:

This inverse 7=2 power dependence was also found by
Perra in his numerical analysis of periodic acceleration
on di�usion [7].

For the case of adiabatic walls, the boundary con-
dition requires an additional term in the solution of
Eq. (11), i.e.,
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Y�Z, t� � ĜryPr Re

"X
n

~Bn

 
sin�npZ�

ÿ np cos�np� sinh
ÿ �����������

iO Pr
p

Z
������������

iO Pr
p

cosh
ÿ �����������

iO Pr
p � !

eiot

#
�32�

where

~Bn � 2 cos�np�
�n2p2 � iO��n2p2 � iO Pr� :

This complex form of the solution is equivalent to Eq.
(26) except for the second term in the bracket. With

this additional term, there is no convenient way to
integrate the series product as before. Therefore, it is
necessary to evaluate the Nu by integrating Eq. (13)

numerically. Note, however, that this term diminishes
with increasing O Pr: Therefore, for higher frequencies,
the solution for conductive walls may be used for

either case

Case 3 (Transverse acceleration contains multiple fre-
quencies, no axial acceleration). For this case, let gx �
0 and ~gy�t� �

P
j ~gje

iojt: Since the governing equations

are linear, their solutions are sums of the contributions
of the individual frequencies and may be written in the
form,

~U�Z, t� �
X
j

~Grj
X
n

�
anj cos�ojt�

� bnj sin�ojt�
�

sin�npZ�
�33�

~Y�Z, t� � Pr
X
k

~Gk

X
m

�
cmk cos�okt�

� dmk sin�okt�
�

sin�mpZ�:
�34�

Only n � m terms contribute to the integral over Z
because of the orthogonality of the sin function. Like-
wise, only j � k terms contribute to the time average
of Nu. Thus, the time average net transport is given by

hNui � Pr2
X
j

Ĝr2j

X
n

1�
n4p4 � O2

j

��
n4p4 � O2

j Pr
2
�
�35�

which for O� 0 becomes

hNui1Pr1=2�Pr3=2 ÿ 1�
23=2�Pr2 ÿ 1�

X
j

Ĝr2j

O7=2
j

�36�

If the ĝ�f � is speci®ed in terms of a power spectral

density function of frequency, PSD( f ), the time aver-
age Nu can be approximated as

hNui1b2�DT=L�2a
p7=225n1=2

Pr1=2�Pr3=2 ÿ 1�
�Pr2 ÿ 1�

�
PSD�f�
f 7=2

df: �37�

3.1. Estimated transport resulting from quasi-steady
accelerations

An instrumented ¯ow cell in the form of an adia-

batic cylinder with di�erentially heated ends was ¯own
on STS-95 to measure the e�ects of the residual accel-
erations [14]. The essential parameters are: a � 2:54
cm, b � 0:00025/8C, DT=L � 48C/cm, n � 0:01 cm2/s,

and Pr � 7: For 1 mg acceleration normal to the ther-
mal axis, Gry � 0:408, Ray � 2:85, umax � 1:03
microns/s, DTmax � 1:298C, N � 0:00575: The DTmax is

the temperature di�erence at the walls in the core
region due to the counter ¯ow. The small value for Nu
indicates the convective transport is negligible for this

case. However, the DTmax predicted from Eq. (19) was
close to the observed measurements for estimated
accelerations ranging from 0.1 to 1.4 mg [15].

For 1 mg, the e�ect of stabilizing/destabilizing axial
gradients is minimal. However, if the acceleration is
increased to 10 mg, the e�ect can be signi®cant as may
be seen in Fig. 2. The dashed line is for adiabatic walls

(Eq. (15)) and the solid line is for conducting walls
(Eq. (21)). In either case, the Rax � 28:5 at y � 0
(destabilizing con®guration) is below the critical value

for over-turning ¯ow.

4. E�ects from single frequency periodic accelerations

4.1. Phase relationships

It is instructive to examine the relative phase re-
lationships between the ¯ow and thermal perturbation
as a function of O by examining the coe�cients of the

dominant terms in Eqs. (25) and (26). To simplify mat-
ters, we set gx � 0 and consider only the steady state
solution. The phase angle between the main part of U
and the acceleration is given by arctan(A1=B1� while
the phase angle between the major portion of Y and
the acceleration is given by arctan(ÿD1=ÿ C1).
For O� 1 (quasi-steady), the ¯ow follows the

acceleration and the temperature perturbation is
1808 out of phase. For ot � 0, the acceleration is
along the +y axis, the ¯ow is in the ÿx direction

in the lower of the chamber and in the +x direc-
tion in the upper half. The result is a warming of
the lower half as the ¯ow carries heat from the
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source to the sink, and opposite in the upper half.

There is a signi®cant di�erence between the tem-

perature perturbation caused by the adiabatic versus

conducting wall boundary condition because the

normal isotherm for the adiabatic condition is

advanced by the ¯ow while the isotherm remains

pinned to the wall in the conducting case. The

ÿUY product is doubly periodic and is maximized

because the U and Y are 1808 out of phase. This

situation persists through O � 1, but around O � 10,

the phase relations begin to change rapidly.

When O � p2, the phase angle between U and the

acceleration becomes 458 and rapidly approaches 908
as O increases, which is consistent with the ®ndings of

Thevenard [4]. The coe�cient C1 changes sign when

O2Pr > p4 and the phase angle between the accelera-

tion and Y rapidly approaches 3608 as O increases.

The phase relations between U and Y are illustrated in

Figs. 3 and 4. Also, as may be seen in Fig. 4, the iso-

therms for adiabatic wall conditions become virtually

indistinguishable from the conductive wall conditions

as O increases past 100 because the ¯ow does not per-

sist long enough to move the isotherm much beyond

its average position. This is important because in most

applications of interest, O will be large enough so that

the closed form solutions for the Nusselt and Sher-

wood numbers will apply regardless of the assumptions

made about the heat and mass transfer to the walls.

4.2. E�ect of a stabilizing gradient on periodic
accelerations

The system described in Example 1 with conductive
walls is used as an example to illustrate the e�ect of a
stabilizing gradient on transport. For various values of

gx, gy, and f, Table 1 gives the resulting O, N̂u and
hNui: Note that a 1 g stabilizing gradient has a signi®-
cant damping e�ect on very low frequency oscillations,
but this damping diminishes rapidly as frequency is

increased. This suggests that it may be possible to
study the e�ects of g-jitter encountered in spacecraft
on Earth by applying horizontal oscillations to a ¯ow

cell or a solidi®cation experiment in a thermally stable
con®guration (hot over cold). (Actually, this possibility
was ®rst suggested by Zavarykin et al. [16].)

4.3. E�ect of start-up transients

Eqs. (25) and (26) contain the e�ects of the start-up
transients for g�t� � ĝ cos�ot�: Assuming both U and
Y are 0 when t � 0: For large O and small n, the Bn

terms in Eq. (25) will dominate; hence, the velocity will
oscillate about the origin, 0908 out of phase with the
acceleration. On the other hand, the center of oscil-

lation for Y will initially be displaced by Cn: However,
since Cn is almost cancelled by An=n

2p2�1� Pr�, the
transient will die out with a time constant given by

Fig. 2. Maximum core velocity in the ¯ow cell example as a function of the angle the g-vector makes with the thermal gradient.

The dashed line corresponds to a chamber with adiabatic walls, the solid to conducting walls. The acceleration is 10 micro-g,

which gives a Rayleigh number for this system of 28.5 putting it below the threshold for unstable convection. Thus, the ¯ow goes

to zero at y � 0 since there is no acceleration component normal to a density gradient.
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t=p2: The e�ect on transport will be a small initial
increase above the steady state value that damps out

exponentially with a time constant of t=p2 as shown in
Fig. 5(a).
The situation will be dramatically di�erent if the

acceleration is given by g�t� � ĝ sin�ot�: The form of

Eqs. (25) and (26) still holds, except in this case
the de®nitions of An and Bn as well as Cn and Dn

are interchanged. Now the velocity oscillation is in-
itially displaced by its amplitude An, which means it
doesn't change sign at the beginning. It approaches

its steady state behavior with a time constant given

Fig. 3. Evolution of the ¯ow ®eld across the chamber for O � 100: The ¯ow ®eld U has been normalized by Ĝry: The phase angle

of U relative to the acceleration approaches 908 as O get larger and the higher order terms in the series push the peaks closer to

the walls.

Table 1

E�ect of stabilizing gradient on transport from periodic accelerations

gx=g0 gy=g0 f (Hz) O N̂u hNui

0 10ÿ5 0 0 0 0.173

0 10ÿ3 0.01 40.5 1.40 0.103

ÿ 1 10ÿ3 0.01 40.5 4:37� 10ÿ5 1:04� 10ÿ5

0 10ÿ2 0.1 405 0.243 3:98� 10ÿ3

ÿ 1 10ÿ2 0.1 405 0.114 1:9� 10ÿ3

0 10ÿ2 1.0 4054 2:76� 10ÿ4 1:31� 10ÿ6

ÿ 1 10ÿ2 1.0 4054 2:90� 10ÿ4 1:34� 10ÿ6

0 10ÿ2 10 40540 2:87� 10ÿ7 4:00� 10ÿ10

ÿ 1 10ÿ2 10 40540 2:87� 10ÿ7 4:00� 10ÿ10
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by t=p2: During this time, the center of oscillation
of the temperature perturbation, which goes as the

integral of the velocity term, continues to increase.
Since now An0O3Pr2 while Cn0O�1� Pr�, the per-
turbation dies as tPr=p2: The result is an enormous

initial increase in transport, as may be seen by
comparing Fig. 5(a) and (b).
This increased transport is highlighted in Fig. 6,

which is a semi-log plot of the average N̂u for the two
cases. Starting with a sine function of acceleration
causes an almost three order of magnitude increase in

initial transport than if the acceleration had been
started with a cosine function. Even though the tem-
perature perturbation persists with a time constant
given by tPr=p2, the N̂u dies out as t=p2 since it is a

product of U and Y: However, if there are other ¯ows,
such as a crystallization ¯ow, the transport of heat
and/or solute will continue as long as the perturbation

in the thermal or solute ®eld persists. This e�ect was
seen by Alexander et al. [3] in the form of a persistent
radial segregation after an acceleration was applied in

the form of sin ot:

4.4. Transport from periodic accelerations

Fig. 7 compares the e�ects of periodic accelerations

with those of quasi-steady acceleration as a function of
dimensionless frequency. The Nusselt number (or Sher-
wood number) is normalized by the square of the

appropriate Rayleigh number. Since for a typical ex-
periment O will be on the order of 100±1000 times the
frequency in Hertz, it may be seen that the net trans-

port from the ®rst order ¯ows resulting from trans-
verse periodic accelerations will be negligible compared
to the quasi-steady transport for virtually all cases of
interest, even though the amplitudes of the periodic

components acceleration may be several orders of mag-
nitude higher than the quasi-steady level. Even though
the ĜryPr for the periodic accelerations may exceed

the range of validity determined for steady accelera-
tions, the model should still be valid since the ¯ow vel-
ocity will be limited by the frequency to values that

are comparable to the quasi-steady case.
Second order streaming ¯ows may arise from peri-

odic accelerations through the non-linear terms that

Fig. 4. Evolution of the temperature perturbation with time across the width of the chamber for O � 100 and Pr � 10: The value

of Y has been normalized by ĜryPr: The solid lines represent the case for adiabatic wall boundary conditions and the dotted lines

represent the case for conductive walls. As O increases, the phase angle approaches 3608 relative to the acceleration and the higher

order terms in the series push the peak closer to the walls. Also as O increases, the isotherms for the adiabatic boundary condition

are not able to move very far from their neutral point; thus they become virtually indistinguishable from conductive wall iso-

therms.
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Fig. 5. Nusselt number computed for the ¯ow cell example as a function of time during the start-up transient. The periodic accel-

eration has an amplitude of 10 mg and a frequency of 1 Hz. (a) For g�t� � ĝ cos�ot� the time average Nusselt number rises to a

peak of 0.0067 in about 15 s. (b) For g�t� � ĝ sin�ot� the time average Nusselt number rises to a peak of 2.46 in about the same

time.
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dropped out of the model in the limit of vanishingly

small aspect ratios. Although such ¯ows are of second

order, they could produce signi®cant transport because

of their non-zero time average. These ¯ows have been

treated extensively in the literature [1,5,6], but no pre-

dictive theory for the transport resulting from such

¯ows has been developed. Gershuni ([6], Chapter 3.1)

computed these secondary ¯ows in a square chamber

with conductive walls and ®nds that they form four

symmetrical counter rotating vortices with zero net

stream function for vibrational Rayleigh numbers less

than 15000. At this point, a bifurcation occurs in

which two of the cells merge to form an asymmetrical

¯ow pattern with a non-zero stream function. The

Nusselt number increases linearly with increasing vi-

brational Rayleigh number until the bifurcation point

is reached, after which it increases somewhat because

of the increased transport from the asymmetrical ¯ow

®eld. This behavior was found to be insensitive to the

Prandtl number for Pr > 1: Gershuni's de®nition of vi-

brational Rayleigh number is equivalent to 8Ĝr2yPr=O
2

in the present notation. The Nusselt number for the

second order nonlinear ¯ows from his result may be

expressed as Nu� � Ĝr2yPr=9375O
2 for Ĝr2yPr <

1875O2: The transport from these nonlinear e�ects is

also shown in Fig. 7. Gershuni also ®nds that the Nu

increases for A > 1 (cases for A < 1 were not

reported), but since the nonlinear terms vanish in the

limit of A40, it seems reasonable to consider the A �
1 case as a upper limit for A < 1: The transport from

these second order ¯ows becomes more important than

the ®rst order e�ects at the higher frequencies and lar-

ger Pr (or Sc ). Even so, it still appears that the quasi-

steady accelerations will provide the primary transport

in most microgravity experiments of the type con-

sidered in this analysis.

Non-zero time average ¯ows may also develop if a

periodic acceleration has both axial and transverse

Fig. 6. Semi log plot of the time averaged Nusselt number from Fig. 5. The upper curve is for the sin ot case and the lower curve

is the cos ot case. Note that the magnitude of the transport during the start-up transient for the sin ot case is almost three orders

of magnitude greater than the ®nal steady state value; whereas the transport during the start-up transient for the cos ot is only

fractionally higher than the steady state value. In both cases the time average Nusselt number falls to the steady state value of

0.0038 with a relaxation time given by t=p2 or 65 s.
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Fig. 7. Comparison of the transport (Nusselt number divided by the square of the Rayleigh number) from quasi-steady accelera-

tion, time averaged transverse ®rst order periodic acceleration (solid curve) and the second order streaming ¯ows from the non-

linear terms in the momentum equation (dashed lines). (a) For Pr � 1 and (b) for Pr � 100: The dashed curves are taken as upper

limits since they were computed for a square chamber and the nonlinear terms must vanish in the limit of 0 aspect ratio. At the

higher frequencies and higher Prandtl numbers, the second order terms become more important than the ®rst order ¯ows because

they produce non-zero time average ¯ows. However, for most systems of interest, the quasi-steady accelerations will be the most

important.
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components [17]. This comes about because during
half of a cycle, the axial ¯ow encounters a destabilizing

gradient, which increases the ¯ow, then during the sec-
ond half of the cycle, it encounters a stabilizing gradi-
ent which decreases the ¯ow. The result is an

oscillating ¯ow similar to the ¯ows described in the
present model, except there will be a non-zero time
average. A crude analysis of the transport from this

type of ¯ow suggests that the Sherwood number scales
as Ĝr4Sc2 sin2 y cos2 yOÿ4 [18]. A more re®ned analysis
based on the model presented in this work is being

developed.

5. E�ect of multiple frequency disturbances

A typical integrated PSD for a Shuttle mission is on
the order of 105 (mg)2, which corresponds to an RMS
of 0300 mg. The Shuttle has structural modes around

3±7 Hz; however, a signi®cant contribution to the inte-
grated PSD comes from the 17 Hz dither frequency of
the KU band antenna and its harmonics. The integral

of the PSD weighted by the inverse 7=2 power of fre-
quency yields 010 (mg)2 s7/2. Factoring out Ĝr (1 mg)
from the numerator of the sum in Eq. (36) and O (1

Hz) from the denominator of the sum, Eq. (36)
becomes equivalent to Eq. (31) with g � 101=2 mg and
O computed for f � 1 Hz. If one take a conservative

estimate that O � 100f, the ratio of hNui from the inte-
grated e�ect of the g-jitter spectrum to the quasi-
steady Nu for 1 mg is 0:00167=Pr2: Again it is seen that
the transport will be dominated by the quasi-steady

acceleration. (The multi-frequencies from the nonlinear
e�ects are not additive, hence their combined e�ects
must be computed numerically.)

6. Conclusions

A simple analytical model has been developed that
describes the heat and mass transport in a low aspect
ratio (length >> width) chamber for steady and per-

iodic acceleration. For steady accelerations normal to
the density gradient, the Nusselt number (ratio of con-
vective to di�usive thermal transport) and the Sher-
wood number (ratio of convective to di�usive solutal

transport) scale as �GrPr�2 and �GrSc�2, respectively.
The predictions using this simple analytical model
appear to be qualitatively consistent with observed

e�ects of quasi-steady acceleration in the instrumented
¯ow cell ¯own on STS-95.
Singularities are present in the quasi-steady model

when the axial Rayleigh numbers reaches certain posi-
tive critical values that depend on the thermal bound-
ary values. These singularities correspond to the

thresholds for unstable Rayleigh Benard-type convec-

tion as shown by comparison with linear stability
analysis. Periodic ¯ows, excited by transverse vi-
brations, tend to stabilize these ¯ows. The singularities

vanish in the presence of periodic transverse accelera-
tions, but the resulting ¯ows can still get large at very
low frequencies.

Periodic oscillations normal to the density gradient
are seen in the ®rst order theory to be an ine�ective

mechanism for heat and mass transport in a low aspect
ration chamber. The velocity and temperature pertur-
bation become almost 908 out of phase with one

another as frequency increases. Net heat and mass
transport are predicted to fall o� as the inverse 7=2
power of frequency. Only the very lowest frequencies
(less than 1 Hz) could be expected to produce signi®-
cant e�ects and then only for acceleration amplitudes

considerably larger than would be expected in normal
Space Shuttle operations. Although the quasi-steady
thermal transport is signi®cantly a�ected by whether

the walls are conductive or insulated, this distinction
vanishes at higher frequencies, thus allowing the sim-

pler formulation for conductive walls to be used for
both thermal and solutal transport.
It was shown that a large stabilizing axial gradient

will signi®cantly damp very low frequency (sub hertz)
transport, but this damping e�ect diminishes as fre-
quency is increased. This suggests the possibly of being

able to test the high frequency predictions of the
model on the ground by applying horizontal periodic

accelerations to a test cell or solidi®cation experiment
with a vertical stabilizing thermal gradient (hot over
cold).

The e�ects of start-up transients are highly depen-
dent on the phase of the acceleration at t � 0; i.e.,

whether the acceleration is represented as a sine or
cosine function. There is virtually no additional trans-
port if the acceleration is represented by a cosine func-

tion, but if the acceleration is represented by a sine
function, there will be an initial non-zero average vel-
ocity, which can produce a very large temperature or

solute excursion. The resulting transport can be orders
of magnitude larger than the steady state value. The

persistence of the temperature or concentration pertur-
bation is proportional to the Prandtl or Schmidt num-
bers, respectably, which can be quite long. However,

the net transport dies with the decay time of the ¯ow
velocity. (However, if there is additional steady state
¯ow such as the growth velocity in a solidi®cation ex-

periment, the transport will continue as long as the
perturbation persists, as was seen by Alexander [3].)

Since the nonlinear terms in the momentum
equation vanish in the limit of small aspect ratio, the
e�ects of multiple frequencies should be additive. This

allows the total transport to be expressed in terms of
the integral of the power spectral density of the accel-
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eration weighted by the inverse 7=2 power of fre-
quency. Using typical power spectral densities observed

during Shuttle operations, the transport from periodic
accelerations in typical experiments to which this
model is applicable should be virtually undetectable. In

any case, it would appear that the e�ects of quasi-
steady accelerations would overwhelm any periodic
acceleration that could be reasonably expected, even

though the latter may have much higher amplitudes.
The role of the start-up transients in producing net

transport also needs to be better understood. As was

shown, whether the acceleration is applied as a sine or
cosine function can make orders of magnitude di�er-
ence in the initial transport. Whether such e�ects play
a signi®cant role in the e�ective mass transfer in space

experiments is not clear.
More work is required in order to understand the

e�ects of g-jitter on space experiments. The most criti-

cal need is detailed experimental time-resolved ¯ow
data measured in a well-de®ned system in which con-
trolled single and multiple frequency accelerations can

be applied. Such data would serve to test and re®ne
the various analytical and computational models that
have been proposed and could lead to a more general

understanding of this important and perplexing
problem.
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